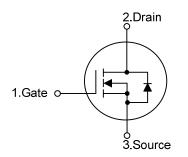


12N65-CBQ

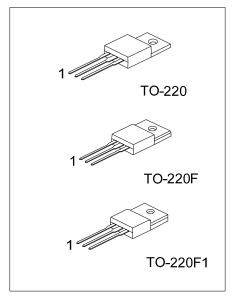
12A, 650V N-CHANNEL POWER MOSFET

DESCRIPTION


The UTC **12N65-CBQ** is a N-channel mode power MOSFET using UTC's advanced technology to provide customers with planar stripe and DMOS technology. This technology allows a minimum on-state resistance and superior switching performance. It also can withstand high energy pulse in the avalanche and commutation mode.

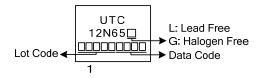
This power MOSFET is usually used at high speed switching applications in power supplies, PWM motor controls, high efficient DC to DC converters and bridge circuits.

FEATURES


- * $R_{DS(ON)}$ < 1.0 Ω @ V_{GS} = 10 V, I_D = 6.0 A
- * Fast switching capability
- * Avalanche energy specified

SYMBOL

ORDERING INFORMATION


Ordering Number		Package	Pin Assignment			Packing	
Lead Free Halogen Free		Fackage	1	2	3	Facking	
12N65L-TA3-T	12N65G-TA3-T	TO-220	G	D	S	Tube	
12N65L-TF1-T	12N65G-TF1-T	TO-220F1	G	D	S	Tube	
12N65L-TF3-T	12N65G-TF3-T	TO-220F	G	D	S	Tube	
Note: Pin Assignment: G: Gate D: Drain S: Source							
12N65 <u>L-TA3-T</u>	(1) T: Tube (2) TA3: TO-2: (3) L: Lead Fre						

Power MOSFET

12N65-CBQ

MARKING

■ ABSOLUTE MAXIMUM RATINGS (T_c = 25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V _{DSS}	650	V
Gate-Source Voltage		V _{GSS}	±30	V
Drain Current	Continuous	I _D	12	Α
	Pulsed (Note 2)	I _{DM}	48	Α
Avalanche Current (Note 2)		I _{AR}	6.3	А
Avalanche Energy	Single Pulsed (Note 3)	E _{AS}	198	mJ
Peak Diode Recovery dv/dt (Note 4)		dv/dt	3.2	V/ns
Power Dissipation	TO-220	D	225	W
	TO-220F/TO-220F1	P _D	51	W
Junction Temperature		TJ	+150	°C
Storage Temperature		T _{STG}	-55 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. Repetitive Rating : Pulse width limited by maximum junction temperature.

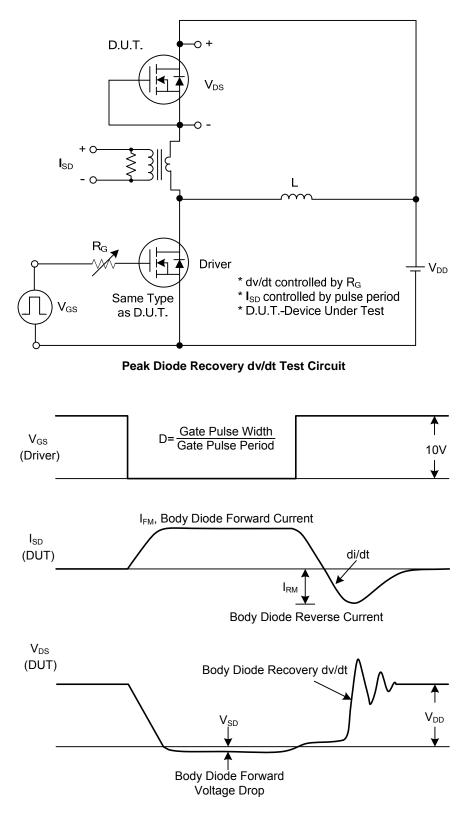
3. L = 10mH, I_{AS} = 6.3A, V_{DD} = 50V, R_{G} = 25 Ω , Starting T_{J} = 25°C

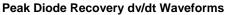
4. $I_{SD} \le 12A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$ Starting $T_J = 25^{\circ}C$

THERMAL DATA

PARAMETER		SYMBOL	RATING	UNIT
Junction to Ambient		θ _{JA}	62.5	°C/W
Junction to Case	TO-220	0	0.56	°C/W
	TO-220F/TO-220F1	θ _{JC}	2.45	°C/W

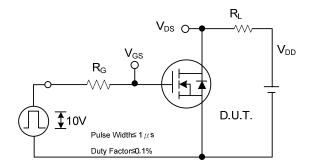
	-					
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} = 0 V, I _D = 250 μA	650			V
Drain-Source Leakage Current	I _{DSS}	V _{DS} = 650 V, V _{GS} = 0 V			1	μA
Gate-Source Leakage Current	I _{GSS}	$V_{GS} = \pm 30 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA
ON CHARACTERISTICS						
Gate Threshold Voltage	V _{GS(TH)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$			4.0	V
Static Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} = 10V, I _D = 6.0A			1.0	Ω
DYNAMIC CHARACTERISTICS						
Input Capacitance	C _{ISS}	$-V_{DS} = 25 V, V_{GS} = 0 V.$		1369		pF
Output Capacitance	C _{OSS}	⊣f = 1MHz		128		рF
Reverse Transfer Capacitance	C _{RSS}			6.0		pF
SWITCHING CHARACTERISTICS						
Total Gate Charge	Q_{G}	−V _{DS} =50V, V _{GS} =10V, I _D =1.3A, −I _D =100μA (Note 1, 2)		75		nC
Gate-Source Charge	Q _{GS}			7.6		nC
Gate-Drain Charge	Q_{GD}			9.0		nC
Turn-On Delay Time	t _{D(ON)}			64		ns
Turn-On Rise Time	t _R	V_{DS} =30V, V_{GS} =10V, I_{D} =0.5A,		36		ns
Turn-Off Delay Time	t _{D(OFF)}	R _G =25Ω (Note 1, 2)		274		ns
Turn-Off Fall Time	t _F	7		47		ns
SOURCE- DRAIN DIODE RATINGS AND C	HARACTERIS	TICS	÷			
Maximum Continuous Drain-Source Diode	1				12	А
Forward Current	I _S				12	A
Maximum Pulsed Drain-Source Diode	L				48	А
Forward Current	I _{SM}				40	~
Drain-Source Diode Forward Voltage	V _{SD}	V _{GS} = 0 V, I _S = 12A			1.4	V
Reverse Recovery Time	t _{rr}	I _S =12A, V _{GS} =0V		440		ns
Reverse Recovery Charge	Qrr	di/dt=100A/µs (Note 1)		3.34		μC

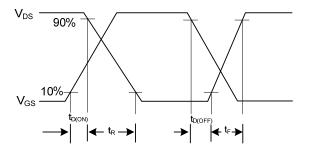

■ ELECTRICAL CHARACTERISTICS (T_C = 25°C, unless otherwise specified)


Notes: 1. Pulse Test : Pulse width \leq 300µs, Duty cycle \leq 2%.

2. Essentially independent of operating temperature.

TEST CIRCUITS AND WAVEFORMS

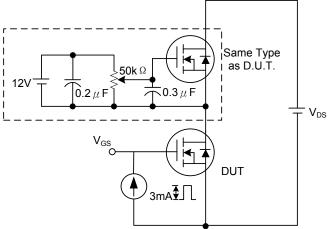


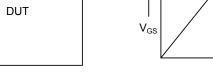


12N65-CBQ

■ TEST CIRCUITS AND WAVEFORMS (Cont.)

Switching Test Circuit

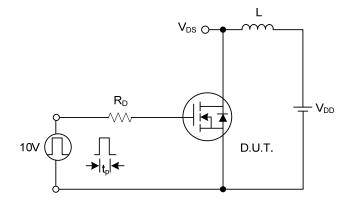



Switching Waveforms

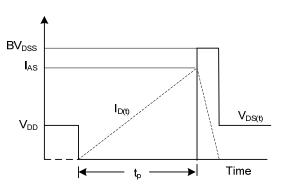
 Q_{G}

 Q_{GD}

Charge



10V


 Q_{GS}

Gate Charge Test Circuit

Gate Charge Waveform

Unclamped Inductive Switching Test Circuit

Unclamped Inductive Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

